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Convergence Theorem for Difference 
Approximations of Hyperbolic Quasi-Linear 

Initial-Boundary Value Problems* 

By Daniel Michelson 

Abstract. Dissipative difference approximations to multi-dimensional hyperbolic quasi-linear 
initial-boundary value problems are considered. The difference approximation is assumed to 
be consistent with the differential problem and its linearization should be stable in 12. A 
formal asymptotic expansion to the difference solution is constructed. This expansion includes 
boundary and initial layers. It is proved that the expansion indeed approximates the 
difference solution to the required order. As a result, the difference solution converges to the 
differential one as the mesh size h tends to 0. 

Introduction. The convergence of difference schemes is considered to be one of the 
main problems numerical analysis is concerned with. In this context one often 
quotes Lax's equivalence theorem that " stability is equivalent to convergence" 
provided the difference approximation is consistent with a well-posed initial value 
problem. Although the said theorem is stated in a broad setting of continuous 
semigroups in Banach spaces, it applies only to linear initial value problems. The 
nonlinear problems require a more detailed treatment. The result one expects here is 
of the following kind. Suppose the difference scheme is consistent with a well-posed 
differential problem and the linearization of the scheme around the analytic solution 
is stable in some norm. Then the convergence should follow. The stability really 
means that a certain a priori estimate is valid. In order to control nonlinear terms 
one should bound the maximum norm of the solution. Unfortunately, the usual 
stability estimates for hyperbolic problems are in the 12-norm. Strang in [6] used a 
clever idea to overcome this difficulty. He constructed a high-order approximate 
solution to the difference scheme u = EN ou()h', where u(i) are smooth functions 
of the space-time variables and h is the mesh size. The function u(0) is the solution 
of the original nonlinear differential problem while u(1) for i >? 1 are solutions of the 
linearized differential problem with forcing terms depending on u(J), j < i. The 
approximate solution Uap satisfies the difference equations up to order O(h N). Thus, 
one expects that the difference v = u - Uap between the exact solution of the scheme 
and the approximate one will be of order O(hN) in the 12-norm. For N > n/2 + 1, 
where n is the space-time dimension, this would imply that v = O(h1+6) in the 
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maximum norm. Thus the 12-norm of quadratic terms like v2 is negligible compared 
with jjv I12 , and the final bound on jjVII/2 would follow from the stability estimate. 
Strang applied this idea to difference approximations of initial value problems for 
quasi-linear hyperbolic systems, i.e., the problem is considered in the whole space or 
has periodic boundary conditions. In this paper we study the initial-boundary value 
problems in a half space or in a strip. As a rule, the difference approximation 
requires more boundary conditions than the differential problem. The additional 
boundary conditions are often called the artificial ones. When the scheme is 
dissipative, the situation is somewhat similar to the singular perturbations of 
hyperbolic systems, with the mesh size h playing the role of the viscosity coefficient. 
As a result, numerical boundary layers develop as h tends to 0. Therefore, there is 
no smooth approximate solution uap as in the case of a Cauchy problem since the 
smooth functions u(i) would not satisfy the artificial boundary conditions. One can, 
however, circumvent this difficulty by adding boundary layers to the approximate 
solution. Namely, let us look for a function 

N N 

(0.1) Uap(X h) - L u(u) (x)hl + u(')(x~lh, X 
1=0 i=l 

where u(') and u(') are smooth functions of their arguments so that Uap(X, h) 
satisfies the difference equations and boundary conditions up to order O(h N?) 

(here the boundary is xl = 0). The first sum in (0.1) is called the outer solution while 
the second is the inner one or the boundary layer. The coefficients u(1) and unit 
could be computed using the technique of singular perturbations. In the case of 
multi-level difference schemes there are also artificial initial conditions, so that one 
has to add to uap an initial layer EN=ui(l)(x1, x2,...,x,11,x/h)h', where Xn is the 
time direction. Such initial layers develop also in Cauchy problems (this is the reason 
Strang considered only two level schemes). It is indeed essential that the boundary 
and initial layer are weak, i.e., of order h. Otherwise, it would be impossible to 
construct the approximate solution, let alone prove the estimate for the difference 
V = u - uap- We will see that the weakness of the layers follows from the consistency 
assumption. The proof of convergence then proceeds as in [6]. The above approach 
requires a considerable smoothness of the data and of the analytic solution u(?). As 
mentioned before, N should be greater than n/2 + 1. The functions u')t are 
solutions of linear hyperbolic systems with forcing terms depending on the deriva- 
tives Dau(J), jlo +j <, i + 1. Since there is a loss of derivative in hyperbolic 
problems, in order for u(N) to be in C' the function u(?) should belong to a Sobolev 
space of order greater than 2N + (n + 1)/2 > 3n/2 + 5/2. An alternative ap- 
proach to the convergence problem is to derive a linear stability estimate in a 
discrete Sobolev space of order greater than n/2. Actually, with weak boundary 
layers one may expect one bounded (numerical) derivative in the directions normal 
to the boundaries and an unlimited number of tangential derivatives (e.g., see [4]). In 
the framework of the stability theory in [3] such an estimate indeed could be derived, 
however the proof is lengthy and very technical. The high-order Sobolev norm 
bounds the maximum norm of the function and thus controls terms like O(u - uo)2 
in the convergence proof. The optimal smoothness requirements would be that u(? 
and the data belong to a Sobolev space of order greater than n/2 + 2. 
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It is also essential that the scheme is dissipative in the directions normal to the 
boundaries since otherwise the boundary layers would not decrease exponentially in 
these directions. For example, the proof is not valid for the leap-frog scheme. Note 
also that for multi-dimensional problems the only schemes for which a general 
stability criteria was proved are the dissipative ones (see [31). 

1. The Difference Scheme and the Approximate Solution. Let uh(x) E Rd be a 
grid vector function defined on a uniform mesh &ih with a step size h in the domain 

= {x = (xx2,...,?xX) E R'10 x <o,0 < x, < T). 

Consider a difference system 

(1.1) L({E OUh(X)} EW Xh) = 0, X GE Oh 

Here a is a multi-index belonging to a finite set a?, 

a (a, a2 *..., an) E SI 

a{a e Zn0 < a1 < a + 1, 0 > an > -a* - 1, I i I < a* for 2 < < n}, 

Eauh(x) a E * E *2 . En uh(x) = Uh(X + ah) 

is a shift operator and L is a smooth real vector function of dimension d which 
depends smoothly on its variables (the precise order of smoothness will be specified 
later in Remark 1.3). The system in (1.1) is augmented by boundary conditions 

(1.2) S({ EUh(X)}G ,bdx h) = 0, X E bdh ={X 2hIXl =0 

where 

Qbd {a E 0 < 1a < 1a} 

and by initial conditions 

(1. 3) Ex'Uh(x) = fa(x, h), 0> an> -ar, X E Qin~h = {X e QlXn = 0) 

Note that the specific form of the sets sl and -Vbd does not pose a restriction, since 
one can always add to L and S dummy variables Eauh(x). However, the lower 
bound -a* - 1 of a? should agree with the number of the initial layers in (1.3), so 
that the problem (1.1)-(1.3) is solvable. Now let us state the 

Consistency Assumption. (i) For smooth functions u(x), 

(1.4) L( { Eau(x)), x, h) = h *Y(u) + 0(h2) 

where 

(1.5) ?(u).= 2A1(u, x)DxJu + B(u, x). 
j=O 

(ii) There exists a smooth function u(?) which belongs to Cr([O, T], HS-r(Qin)) for 
all 0 < r < s with s > 3[n/2 + 2] and which satisfies Eq. (1.1) up to order 0(h2) 
and Eqs. (1.2) and (1.3) up to order 0(h). In other words, 

U 

(1.6) A Au(u(0)(x),x)DxJu()(x) + B(u(0)(x),x) = 0, x E Q.2 
j=1 

(1.7) S({u(?)(x) X) = 0, X e e bd = {X 21Il = 0}, 
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Until additional assumptions are imposed on the matrices Aj(u, x), the condition in 
(1.4) merely states that the operator L({ Eau }, x, 0) vanishes on constant grid 
functions. 

Let us linearize the problem in (1.1)-(1.3) at the smooth function u(?). Namely, 
define the matrix functions 

(1.9) L(x, h) = aL({ Eau(x)}, x, h)/aEfu(x) I u=u. 

Then the linearization of L at u(0) is 

(1.10) dL[u(?)] = L,(x, h)Eo, a E=- -. 
a 

Similarly is defined 

(1.11) dS[u(0)] - Sa(x, h)Ea, a EJVbd. 
a 

The linearized initial-boundary value problem is 

(i) dL[u(0)]v(x) = hF(x), X E Oh 

(1.12) (ii) dS[u(0)]v(x) = g(x), x E 2bdh' 

(iii) Exv(x) = fa(X) > a > -a*l X E Qinh- 

There are several definitions of stability. The one used in [3] is 
Definition 1.1. The problem in (1.12) with zero initial conditions is stable if there 

exist constants Ko > 0, ho > 0 and o > 0 such that for any 0 < h < ho and any 
grid functions F E 12(oh), g E 12(obdh) there exists a unique solution u E 12(oh) 

which satisfies the estimate 

(1.13) 'nI e-1x,,v Ih+ IExal -ILXbh Ko(qf1II e- 'XnFIh + Il-'~ 
a, =0 

for all 'o < q 1/h. 
Here IIVI12h = IXeahlV(X)12hn is the weighted 12-norm over the space Oh and 

similarly for the norm * bdh- With q = 1jh, estimate (1.13) implies the solvability 
of the problem in (1.12). Namely, for grid functions w defined on the mesh Qin2h the 
mapping 

(1.14) w -* (dL(0)[u(0)]w dS(0) [ u()]w) 

is an isomorphism from 12(oin,h) onto 12(Qinh) X 12(gin,h n Qbd,h) with the estimate 

(1.15) EIw(x)I <Ko(EIdL(O)w(x) 2+EIdS(O)w(x)I1) 

holding uniformly for all 0 < h < h 0. Here, 

(1.16) dL(?0 [u(?)] = ELa(x h)Ea a = (al, 2, ... *n- 0) E= -1 
ai 

is the restriction of dL[u(?)] to the upper time level and similarly for dS(?). The 
summation in (1.15) is carried over the appropriate domains of the argument x. 
Estimate (1.13) was proved in [3] for dissipative difference approximations of strictly 
hyperbolic problems, provided the so-called uniform Kreiss condition is satisfied. 
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There are well-posed problems for which the Kreiss condition does not hold 
uniformly. In such a case one may hope that a weaker estimate 

(1.17) I|e 7v II2||h < Ko (q-1|e qx F 112 + (-qh) || e - xg 112 

is valid (e.g., see [1]). Note that like (1.13), the above estimate with rqh = 1 implies 
the solvability condition (1.15). 

We will need also the following 
Remark 1.1. Suppose that the problem in (1.12) is stable in the sense of estimates 

(1.13) or (1.17). Let us perturb the coefficients of dL and dS by order 0(h). Then 
the perturbed problem is also stable in the sense of the same estimates with, 
possibly, larger constants o and K0. 

Next, we assume that the linear operator dL[u(?)] is dissipative in the directions 
normal to the boundaries, i.e., in the directions xi and xn. More precisely, define 
difference operators dLbd and dLin by the equalities 

(1.18) (Ex1 -)dLbd = o La(X, 0) Eal, x E GE E 

and 

(1.19) -I) dLin = E La(x,0)EP, x E E.Qin 

By the consistency assumption in (1.4) the sum La fLa(X, 0) is zero and hence the 
operators in the right-hand sides of (1.18) and (1.19) are indeed divisible by 

(EX1 - 1) and (E Xn- I), respectively. 
Dissipativity Assumption. The operators dLbd and dLin do not have eigenvalues on 

the unit circle. 
This is the same as to say that the equations 

(1.20) det( E La(XO)zal) = 0 GE Qbd 

and 

(1.21) det( E La(x,O)zan) = 0, X E gin 
ass 

do not have solutions with IzI= 1 but z= 1, and that in addition the matrices 

Aj(u(?), x) for x E Qbd and A (u(0), x) for x E Qin are nonsingular. 
Now let us start to construct the approximate solution Uap for the problems 

(1.1)-(1.3). As mentioned in the introduction, 
N N 

Uap(x, h) =Eu(iu) (x)h' u(')(x~lhx9...9X) 
(1.22) i=O i=1 

N 

+ EUni)(X1, ... I Xn-1 Xnlh)h 
i=1 

where uO) u (O). In order to substitute uap(x, h) into (1.1) we first expand 

E 'u~iu) ( d(a v) h k U~iu) ( x) 
(1.23) k=( 

(aD) (N-i+ N-i+ i 
+ _U(i)(x + Oh)h il, j>0 

(N-i? 1)!ou 
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and 

E'aUj(X/ ) : (atan IDtan 
) 

kk)Ealu(X/hx) 

(1.24) ______________1+ 

+ (aa ~) hN- 41 'u()(j (n - + 1 'E Xi 
b X 

/hXtan + Oh), 

i> 1, 

where a * Dtan = Z>2aj D , and use a similar expansion for u0). Then L is 
expanded around the point {EaUh(X)} = {u(0)(x)}, h = 0, in powers of EaUh(X) 

- u(?0(x) and h up to order N + 1, and EaUh(X) - u(?)(x) is replaced by an 
expansion of Eauap(x, h) - u((x) corresponding to (1.23)-(1.24). Combining the 
terms according to the powers of h gives 

N 

(1.25) L Q Etuap(x, h)}, x, h) =EL(l)(X, XllhXnlh) -hi + 0(h N+ ), 
i=1 

where 

(1.26) O(hN~l) KhN+l, 

provided the functions uoiu)I 0 < i < N, belong to CN-i+l(0), ugi3, 1 < i < N, 
belong to CN '(0bd) uniformly in x1/h and similarly for uO. Note that by the 
Consistency Assumption the expansion in (1.25) indeed starts with a first-order term 
L(l)h, which is effected only by the boundary and initial layers u(i) and uM (see 
(1.28) below). For i > 1 the function u~i 1) contributes to L(l) as 

E (LQ(x, 0)(aD) + ahLo(X, 0)) ut ) -u 

n n 

(1.27) = Aj(u()(x), x)DXJ + E avA,( u(?)(x),x)D u"(x) 
_j=0 J=0 

+a 
aB(u(0)(x),x) u(1- ) 

and u k) with k > i does not enter P'). On the other hand, for i > 1 the highest 
term u(k) to enter L(l) is u(') and its contribution is 

(1.28) E L.,(x, O)Exalu(13(xj/h, Xtn 

The other terms in L(i) will be separated into four parts. The first one is 

(1.29) Fo-u coef( u)H Dx u J) I j < i-2, 

where the sum (I1131 + j) of the indices in the product does not exceed i. Here and 
elsewhere, coef(uo) is a generic notation for partial derivatives of L or S at the point 
{ EUh } = { u() }, h = 0. The second part is 

(1.30) PFbd) = E coef(uo)( HDfu(J) (HDxtanEYlu U) k i-1, 

where 
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This part is obviously absent when i = 1. The third part (n) is of the same type as 
(1.30) with U k) replaced by U 

~ 
k), while the fourth part R(bidin is a sum of products 

where both Ubd and Uin participate. Now, we balance the smooth part Fo(J) with 
(1.27), i.e., 

(1.32) dY [ u(?) ] u M = F( x E Q. i > 1. 

In Fh) two scales x1 and x1/h are present. Thus, in the smooth coefficients 

f( X1Xtan) = coef(uo) H Dfluj) 
we write x1 = h - (x1/h) and expand 

N-iD Dk 

(1.33) f( x XIXa) x lf(o x 
I . hk + O ) 

around x = (0, xtUn). A similar expansion is performed for La(x, 0) in (1.28). We 
will see below that u(') is of the following form, 

(1.34) U M (Xi/h,Xtan) = e -ik x/h -(Xl/h)'fik(Xtaf), 

kI 

where 

Xik> >8> ?, / < i-i1, fikI E CN-i1 (Qbd) 

Thus, the contribution of O(xjN-i+l) to L is bounded by 

(1.35) hi KXlN-i+ l (x/ e-,Ixl/ 1 h N+ l 

With the expansion in (1.33) substituted into k) and La(x, 0), the sum 
N 

E. L(x, 0) Ex~i u + tbd) hi 
ila 

is recombined into 
N 

(1.36) E (Ex- I)[dLbdu(bi + Fbd)]h' + O(hN+1), 
i=1 

where Fb') has the form of the right-hand side in (1.34). Here we have used (1.18) 
and the fact that 

(Ex - I) 'eXxj/h . (x/h) = e Xxi/h E Ck(X)(Xl/h). 

k=O 

Thus, the boundary layer satisfies the equation 

(1.37) dL bdU = -Fbd) 

Similarly, for the initial layer 

(1.38) dL nUn = -Fin ) 

We will prove later that under the compatibility conditions, the boundary and 
initial layers are negligibly small near the space-time corner. More specifically, 

(1.39) Dju(') = 0 at x, = 0 and D-u(') = 0 at x1 = 0 for j < N-i. 

Then, by (1.34), the interaction of the boundary and initial layers, 
N 

(1.40) E R(id hi = o(h N+2) 
i=1 

is a negligible term. 
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The boundary operator S is treated in a way similar to L. Define 

(1.41) dSout S.(X, O), dSbd = Sa(X, O)Ex', I a bd X1 = 0. 

Then one can write 
N 

(1.42) S({Eauap},XI h) = S S(')(Xtan)h' + O(hN+1). 
l==1 

By (1.7) there is indeed no zero-order term in the expansion. The coefficients S(') 
have the form 

(1.43) S~')(Xtan) = dSOut )ot(X) + dSbdUb(d)(X) + g(x), x1 - 0, 

where 

(1.44) g(l)(x) = E coef( u )ID uWEXY DYtan U (k) 

and the indices in each product are bounded as 

(1.45) L (111 + ) + E (lYtani + k) < i, j < i - 1, k < i - 1. 

In view of (1.39), the contribution of the initial layer uin to the boundary operator 
is an O(h N+ 1) term and is absorbed in the remainder of (1.42). Altogether, this 
remainder is bounded as in (1.26), provided the mentioned smoothness conditions 
hold for uOi), uWj and u$Q. Note that unlike L(') there are no different scales in SM. 
The resulting boundary condition 

(1.46) dSoutou~t(x) + dSbdUb(x) g (x), x e Qbd 

couples together the outer solution u1)t with the boundary layer u(j). However, with 
the aid of Eq. (1.37) one can decouple the boundary condition (1.46). Namely, for a 
grid function w: Z + -* RdI denote by iw(O) the vector 

(1.47) iw3(0) = (w(0),w(1),. w( )) 

Let V(xtan) be the space of vectors w(0) corresponding to the exponentially 
decreasing solutions of the equation dLbdw = 0 at fixed x tan (and with Exlw( j) = 

w(j + 1)). 
Since dLbd is a difference operator in the x1-direction with coefficients indepen- 

dent of x1, such a space could easily be constructed. By the dissipativity assumption 
the space V(xtan) depends smoothly on xtan' Given a grid function F in the 
x1-direction, denote by dLil(xtan)F the solution w of the problem 

(1.48) dLbdw= F, w(0) 1 V(Xtan). 

Thus, the vector dSbd ub)(x) in (1.46) is equal to dSbd dL- (Xtan)(-Fb1)) modulo 
the space 

(1.49) W(Xtan) = dSbd * V(Xtan)- 

Let Pbd(Xtan) be a projector which acts on the space of the vectors g(A'(x) and 
whose kernel is the subspace W(xtan). Apply Pbd to (1.46). The resulting boundary 
condition is 

1.50) Pbd(Xtan) dSoutu(,Q(x) 
Pbd(Xtan) }g('.(1)() + dSbd dL- ( X tan )F(l) X = (0, Xtan) 
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The initial conditions are treated in the same manner as the boundary ones. The 
functions u~i) (x) and u,')(x) satisfy the initial conditions 

(1.51) UM (x). + E'uu(x) -fx)(x), x E Qins 0 > a,> > sa* 

where 

(1.52) D'Jaxx )= !D fa(xO)? j) Jan) (X) h ~ j=1 ! otW 

Thus, the approximate solution uap satisfies the initial conditions 

(1.53) E',,uap(x, h) =f(xi) + O(hN+), x E Sin, 0 > an> a* 

with O(h N+ 1) bounded by KhN+1 as in (1.26). The separated initial conditions for 
U are 

(15)Pin ( x) '( Uou)t ( x) ,** iu~t( x) ) 

(1.54) = Pin(X) [( f(i ) (x ) . f1(i)(x)) + dLil(X) Fi(n) in 

Note that the stability of the problem (1.12) as stated in (1.13) or in (1.17), 
together with the Dissipativity Assumption, implies that the characteristic equation 
for dLin has solutions only in the disc Izi < 1. Thus, the space of the decreasing 
solutions of the equations dLi. - w = 0 has dimension a* x d and the image of Pin 
has dimension d. Since constant grid functions are not eigenfunctions of dLin, Eq. 
(1.54) uniquely defines the vector u(') (X), X E Q, for all values of f(1)(x) and FJ(1). 
Then (1.51) provides the necessary initial conditions for u0 in order to solve Eq. 
(1.38). 

The functions u it, UM and u0) are computed in the following order. First one 
solves the initial-boundary value problem in (1.32), (1.50), (1.54) for u('). With 
u (u) (x) known at the boundary Qbd' one obtains from (1.46) the necessary boundary 
conditions to solve Eq. (1.37) for ug,). Similarly one computes u$1M). Then the same 
loop is repeated for i = 2,3,..., N. Obviously, one should assume that the initial- 
boundary value problem 

(i) d.Y[u(?)] v~ X GE a, 

(1.55) (ii) Pbd dSoutv -g , x E S bd' 

(iii) V =f, x EgSin 

is well posed. The usual definition of well-posedness for a hyperbolic initial-boundary 
value problem requires the a priori estimate 

(1.56) sup Iv(< x) { _ K( IFII (TT2) ?l V(. i) 

tj <X,, <T2 

for all solutions of (1.55) with g = 0 and all subintervals [XI, T2] C [0, T], and a 
similar estimate for the adjoint problem. A more strict definition of Kreiss [2] 
requires 

sup 11 V( , Xn) I19in + 11 V(0, .) IkEbd(TlT2) 

(1.57) 1<xZT2 

__ II F 
112TT2 

+1 11 gt 
fOd I T2 

+11 V \ 1i 
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for the problem in (1.55) and a similar estimate for the adjoint problem. Here and 
above, Q(T1, T2) = {X E Qi2 1 i - n < x T2 and similarly for Obd(AT1,T2). Our next 
assumption is that the map 

(1.58) dSbd: V(Xtan) W(Xtan) is an isomorphism. 

Thus, one can solve (1.37) and (1.46) uniquely for ubi) provided u')t satisfies (1.50). 
The simplest way to assure both (1.57) and (1.58) as well as the stability in (1.13) is 
by imposing all the conditions of Theorem 1.3 in [3]. Namely, 

(i) the operator dY [ u (0)] is strictly hyperbolic with xn being the time variable, 
(ii) the matrix A1(uM0)(x), x) is nonsingular at x E Q bd, 

(iii) the difference problem in (1.12) is solvable as stated in (1.15), 
(iv) the difference operator is dissipative as stated in [3] (Assumption 1.4), 
(v) the uniform Kreiss condition (UKC) holds for problem (1.12) (see (1.34) in 

[3]). 
As shown in [3, Lemma 1.1], conditions (i), (ii) and (v) above together with the 

dissipativity assumption for dLbd imply the Kreiss condition for the problem in 
(1.55) and the isomorphism in (1.58). Hence the problem in (1.55) is well posed in 
the sense of estimate (1.57). There are, however, difference schemes for which the 
conditions (i), (ii), (iv), and (v) are not fulfilled and for which estimate (1.17) could 
be proved by an energy method. In such a case the conditions in (1.56) and (1.58) 
should be imposed independently. 

The construction of the approximate solution requires that 

u 1)t E- CN +(gQ), U(,)((XI 1 *) E- CN ( Qbd 

and 

Uin)( X -n CN (,in 

The natural spaces for the hyperbolic problem in (1.55) are, however, the Sobolev 
spaces Hs. Since there is a loss of derivative in hyperbolic problems, the appropriate 
smoothness conditions for uout' ubd' and uin are 

(1.59) U () E C r([0, T], Hs-2-r( )) 0 < r < s - 2i, 

(1.60) U,)(X1, .) E Cr([0, T], Hs-21l/2(iq1iln)), 0 < r < s - 2s i - 1 

and 

(1 .61) ui~n) ( , n - s2,( Qn 

where 

(1.62) s > 2N + (n + 1)/2. 

Remark 1.2. If the problem in (1.55) is Kreiss well posed, i.e., estimate (1.57) 
holds, then uij) (0, -) E Hs -2l( bd) and u3(x1, -) E Hs -2i(Qibd). 

For u1)t to be of the required smoothness, the problem in (1.32) should satisfy the 
compatibility conditions of order s - 2i - 1 at the time-space corner x1 = Xn = 0 
(see [5]). Since one does not want the boundary and initial layers to interfere with 
these conditions, one has to request that 

(1.63) D Jui$)=0 atx1 =0 and DTUbl3=0 atxf =0forjYs-2i-1. 
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This is obviously stronger than the assumption in (1.39). The resulting compatibility 
condition for the problem in (1.1)-(1.3) could be stated as follows. 

Compatibility Condition. Let us substitute in (1.1)-(1.3) a formal expansion 
h = EN2ou0u')(x)h' with u?)t = u(?). Define Fo'u) as in (1.29), f(i) as in (1.52), and 

g(l) as in (1.44) with u(k) = 0. With the aid of the equations in (1.32) and the initial 9 ~~~~~~bd 
conditions in (1.54) (with Fi(') = 0) express the derivatives Dfu(j), , < (aIl < s - 2i 
- 1, at the corner x1 = Xn= 0 in terms of the original data f in (1.3), 

(1.64) Dx u ( ) = E coef( u(0)) H Dfu(0)DDhkf, (x, 0), 

where in the above products the sum of the indices Z(1,13 + IyI + k) < a + i. 
Substitute the above expressions into DxI(dSoutU(ut + g(l)) and DxJ(uU)t -f(0) 
0 < j < s - 2i - 1. Then the resulting similar expressions in terms of coef(u (0)), 

Dfu"0) and D7D/kJ(x, 0) should vanish at x1 = = 0 for all 1 i < N. 
The above deliberation can be summarized in the following 

THEOREM 1.1. Let the difference problem in (1.1)-(1.3) satisfy the Consistency 
Assumption with s > 2N + (n + 1)/2, the Dissipativity Assumption and the Compati- 
bility Condition. Also let the reduced differential problem in (1.55) be well posed in the 
sense of (1.56) and the boundary operator dSbd satisfy the assumption in (1.58). 
Finally, let the functions fan(x, h) in (1.3) belong to C1([0, ho], Hs-2i( in)) for 
0 < i < N + 1. Then there exists an approximate solution uap(x, h) as in (1.22) such 
that u(ui), U($d) u belong to the spaces shown in (1.59)-(1.61), uWQ, u(1j vanish at the 
time-space corner as in (1.63) and the derivatives DaUoQ)J for IaIl < s - 2i - 1 at 

XI = X0 = 0 coincide with the ones in (1.64). This approximate solution satisfies 

(i) L({Eauap(xh)},x,h) = OL(hN+?), X GE 2h 

(1.65) (ii) S( EaUap(x, h)}, x, h) = Os(h N ), x E Qbdh' 

(iii) Ex uap(x, h) fan(x, h) = Of(hN l), x E Qinh 

where 

(1.66) OL(h Nh ) 119h 
+ 10s(hN ) 119bd h 

+ 11?f(h 1) 19nh 
' KhN+I 

and the constant K is independent of h. 

Proof. We will prove the smoothness conditions in (1.59)-(1.61) and the degener- 
acy of the initial boundary layers in (1.63) by induction in i. Consider the problem 
in (1.32), (1.50), (1.54) for i = io. Note that the function FO(uo+') in (1.29) belongs to 
Hs-2io(2). Indeed D:u ) E Hs-2j-IflI(2) c Hs-2lo(2), since 2j + 1I1 = (j + 1/1) 
+ j < (io + 1) + (io - 1), while Hs-2lo(2) is a Banach algebra for s - 2io > n/2. 
Similarly, for the function g(lo) in (1.44), DAuJ) belongs to Hs-2l0+l(') and its 
restriction to ibd as well as the second factor E?Y1D tanug)(0, ) 

bd I tan bd (0, -) ~lie in 
Hs-2lo+l/2(Qbd). Since the last space for s - 2io > n/2 is a Banach algebra, the 
function g(lo) belongs to Hs-2io + 1/2(Qbd)* Recall that the function Fbdo) has the 
form displayed at the right-hand side of (1.34) and the corresponding coefficients 

fikI(Xtan) belong to Hs-2io+1/2( Qbd). Thus for i = io the right-hand side in (1.50) 
belongs to Hs-2l0+l/2(gibd). Finally the functions f (0) belong to Hs-2lo(i2-). 
Clearly, the data in the problem (1.32), (1.50), (1.54) is smooth enough for the 
purposes of the compatibility conditions of order s - 2io - 1. By the induction 
hypothesis, (1.63) holds for i < i0 - 1. Thus the initial and boundary layers u ($) and 
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ubji do not affect the partial derivatives Dfu(oZ), lal < s - 2iO - 1, at the corner 
x1= = 0. Hence the later ones coincide with Dx uOjUo) in (1.64). As a result, the 

initial-boundary value problem in (1.32), (1.50), (1.54) for i = io satisfies the usual 
compatibility conditions of order s - 2iO - 1 at the time-space corner. As it follows 
from Theorem 5.1 in [5], the solution u'0) of the above problem belongs to the 
spaces in (1.59) with i = io. The function ub('0) is computed by solving Eq. (1.37) 
with boundary conditions in (1.46). Since Fbdo)(x1, ) E Hs-21+1/2(0 bd) belongs to 
Cr([0, T], Hs-210-l/2-r( bd n Qji)) for all 0 < r < s - 21O - 1, and so does the 
restriction u0'0)(0, -), the function ub(d) therefore belongs to the spaces in (1.60). By 
the Compatibility Condition, D(dSoutuout) + g(l)) vanishes at x1 = = 0 for 
j < s - 2i0 -1. Since the derivatives D1J " vanish at xn = 0 for j < s - 2i -1 
and i < io-l, so do the derivatives D FJ Fbd) for j < s - 2iO -1. Therefore, (1.63) 
holds also for ub(S). The function uNo) is treated in a similar way. The formulas in 
(1.65) follow from the construction of the approximate solution. With s > 2N + 
(n + 1)/2 the function u(') belongs to CN-i+?(2) 

Ubd(X1, *) E CN ' (Qbd) and ui')(x, .) E C 1(e) 

Hence the truncation errors in (1.65) are bounded by Kh N+1 in the maximum norm. 
With the integral formula of the remainder in the Taylor expansions (1.23), (1.24) 
and (1.33), one is able to prove that the bound in (1.66) holds also in the L2-norm. 
This observation concludes the proof of the theorem. O 

Remark 1.3. In the proof above we were not concerned with the smoothness of L 
and S as functions of { EaUh(x)}, x and h. It could be shown that the sufficient 
smoothness requirements are that L and S lie in the space HS with respect to the 
totality of their variables, where s is as in (1.62). 

2. The Convergence to the Asymptotic Solution. In this section we shall prove that 
the formal asymptotic solution uap(x) indeed approximates the true solution of Uh 

of the problem (1.1)-(1.3). The specific construction of uap and the smoothness of 
the coefficients as in (1.59)-(1.61) are not needed any more. The precise statement of 
the result is as follows. 

THEOREM 2.1. Let Uap(X, h) be a family of grid functions defined on the grids oh 

such that the difference Uap(X, h) - u((x) is 0(h) in the lo,(Qh)-norm, where u(0)(x) 
is a function defined on U. Assume that uap(x, h) satisfies Eqs. (1.65) with the 
truncation errors bounded as in (1.66), where N > n/2 + 1. Finally, let the linearized 
problem in (1.12) be stable in the sense of (1.17). Then for h < ho there exists a 
solution Uh of (1.1)-(1.3) such that 

(2.1) ||Uh - Uap(X h) <Kh , 

where ho and K are some positive constants. If Uh is another solution of (1.1)-(1.3) 
and -U h - u() is sufficiently small in the lo, (Oh)-norm, then necessarily -Uh = Uh. 

Proof. If uk is a solution of (1.1)-(1.3), the difference v = Uh - Uap(x, h) satisfies 
the equations 

(a) dL[uap]v(x) = hF(x), x C Oh, 

(2.2) (b) dS[uap]v(x) = g(x), x 2 bdh, 
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where hF(x) = -OL(hN+l) + O0(V2), g(x) = -Os(hN+l) + 02(v2) and f< (x) = 

-Of (h N+ I). The quadratic terms 01 and 02 are bounded by 

(2.3) ||01(V2) h + h2 / 02(V 2) 9bdh < K1 sup I v(X) I1V Ih. 
X C Oh 

(We assume that L and S are C2 functions with respect to the variables Eau.) Since 
Uap(x, h) - u(o)(x) = O(h), estimate (1.17) for the problem in (1.12) implies the 
estimate 

(2.4) {l i "Oh < K2 (!F "Oh 
+ h g "Obd h 

+ h / a 
11Un),h 

for the problem in (2.2). Thus, in view of (1.66), 

(2.5) || v "Oh < K3hN + KjK2h-1 sup I v(x) I * |v|h' 
X C Oh 

where K3 = K2K and K is the constant in (1.66). We wish to prove that for h 
sufficiently small 

(2.6) || v 11Qh < 2K3h 
Clearly, 11V1L?h = O(hN) would imply h'1supIv(x)I = h-lO(hN-n/2) = o(1), so that 
the second term in the right-hand side of (2.5) is negligible compared with 1lv I h. Let 

Qhk= = ==X n XQnhX jh, -a* < j < k}. 
We will prove by induction in k that for h < h3 

(2.7) II!VIIQ < 2K3h N 

where h3 is to be defined later. For k = 0 this estimate follows from (1.66). Since the 
difference scheme may be implicit, in order to construct Uh at Xn = (k + 1)h, one 
has to apply the implicit map theorem. Namely, consider the equations 

(a) L({E&a(Uap + v)}, x, h) -L({ E?Uap} x, h) + 0F 0, 

(2.8) (b) S({ Ea(Uap + v)}, x, h)-S({ EaUap} x, h) + Os = 

at the time level xn = (k + 1)h. The left-hand side of (2.8) could be thought of as a 
map which depends on the grid functions 

v(x- ,(k + l)h), . v (x-, (k - a*)h), X E Qin,h, 

and on OF, Os at x, = (k + 1)h with the norms 

(2.9) l = l V(X) 2(9,h), X_ Iinh 

(i.e., without the weight h n- as in the 11 I 1 -norm). The values of the map are 
in~h 

pairs of grid functions with the same norm as in (2.9). Clearly, this map is 
continuously differentiable and its differential with respect to v(-, (k + 1)h) at the 
zero point is given by the pair (dL(0)[uap], dS(?)[Uap]) (see the definition in (1.16)). 
Since uap - u()=O(h), the above differential, like the map in (1.14), is an 
isomorphism and estimate (1.15) holds. Thus the equations in (2.8) could be solved 
with respect to v(x, (k + 1)h) and the solution is bounded by 

I1v(, (k + 1)h) I112(gilh) 

k 

(2.10) < K4 (E I ( , jhI) A l 2(inh) + 11 OF 1112(ginh) + 1O OS 1112( (n,h) 

\ /= k ? h 

< K4hrl/2((1 + l* ) ||/2|IQ + |? I + 11 s~h IIS K5hN P/2t 
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provided the last bound is sufficiently small. Hence, 

(2.11) sup jv(x)Ij max(K5,2K3)hNn/2 = K6hNn/2. 
X E Qh+ 

Note that estimate (2.5) is valid also when Qh is replaced by Q Hence, for 
K1K2K6h N-n/2 < 1/2 we obtain IIvIIk+1 < 2K3hN. Since the constants Ki are 
independent of h and k, estimate (2.7), and hence (2.1), are valid for all h bounded 
by some h3. For the local uniqueness of the solution uh in /O,,(Qh) one has to prove 
that the map in (1.14) is an isomorphism also in the maximum norm. Indeed, as 
shown in [3, Theorem 1.1], the solvability of the problem in (1.12) is equivalent to a 
certain algebraic coercivity condition for the pair of operations (dL(0), dS(?)). For a 
complex vector z = (zl, Z2, ... h Zn-1) define 

dL(?) = EL(x, h)(zE), 

where the above sum is carried over the same set of indices a as in (1.16) and 
(zE)a = (zlExl)ci l.. (Zn-1EXn-_1 )-I, and in a similar way define dSz(I). Note that 
the pair (dLR), dSz()) satisfies the same coercivity conditions as (dL(0), dS(?)), 
provided (1 + e)-1 < Iz11 < (1 + e), i = 1 2, ..., n - 1, and - is sufficiently small. 
As a result, for such z, 

(2.12) LIZ xhw(x)2 K EjZx hdL(0)W(X)12+ L jZxhdS(?)W(X)1 
X X X1=0 

If the supports of dL(?)w and dS(?)w lie in the cone x >? 0, the above estimate with 

Zi = (1 + e)', i = 1,...,n - 1, implies 

(2.13) Iw(0)|< K(| dL(0)w j,, +||dS(0)w loo), 

where *lo is the /,,-norm. The other cones in the half space x1 > 0 are treated in 
a similar way, i.e., if x1 < 0 then choose zi = 1 + e. In the general case, the functions 
F = dL(?)w and g = dS(?)w are split into a sum of 2n-2 terms with supports in 
corresponding cones so that (2.13) follows. Since the point x2 = O. . . ., xn-1 = 0 has 
no preference in the grid Qbdh n in h the same bound as in (2.13) holds also for 

jjw(xj = 0, )lI.. Now let iw(x) = w(x) for x1 > 0 and -w(x) = O for x1 < O. With 

dio)w defined in the whole space, we obtain 

(2.14) || w Iloo < KII dL()-w IooI < K(II dL(o)w II., + ?| w(xl = 0, ) 1IK0) 

< K(||dL?)w lloo +j||dS(?)wIlloo) . 

This estimate concludes the proof of the theorem. O 

COROLLARY 2.1. Let the conditions of Theorem 1.1 hold and let u(NI) be the part of 
the expansion in (1.22) with powers of h up to (and including) hNl. If N1 < N - 1, 

then 

(2.15) ||Uh - 
UapIlh | KhN? +1 

and if N1 < N - n/2 - 1, then 

(2.16) NUh - u'pl |() 
, KhN1?l. 
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In particular, if the difference problem in (1.1)-(1.3) is an rth order approximation of 
(1.6)-(1.8), then u () = u(r-1) and hence 

(2.17) laUh - U(0) lh) s Khr, 

provided the conditions of Theorem 1.1 hold with N > r + n/2. 

Thus, estimate (2.17) establishes the precise rate with which the difference solution 
Uh converges to the analytical solution u 
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